An ‘open-set’ detection evaluation methodology for automatic emotion recognition in speech

نویسندگان

  • Khiet P. Truong
  • David A. van Leeuwen
چکیده

In this paper, we present a detection approach and an ‘open-set’ detection evaluation methodology for automatic emotion recognition in speech. The traditional classification approach does not seem to be suitable and flexible enough for typical emotion recognition tasks. For example, classification does not have an appropriate way to cope with ‘new’ emotions from outside the training database that can be encountered in real life situations. With the presented approach and evaluation method we aim to perform experiments that suit the task of an emotion detector and to obtain results that are better interpretable and generalizable to other datasets. This evaluation method takes into account the fact that ‘new’ emotions can be encountered by the emotion detectors that are not covered by the trained models. We also tested the trained emotion detectors on an independent emotion database. We report results that indicate that our ‘openset’ evaluation methodology indeed produces more representative and generizable results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

An open-set detection evaluation methodology applied to language and emotion recognition

This paper introduces a detection methodology for recognition technologies in speech for which it is difficult to obtain an abundance of non-target classes. An example is language recognition, where we would like to be able to measure the detection capability of a single target language without confounding with the modeling capability of non-target languages. The evaluation framework is based o...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Perceptual audio features for emotion detection

In this article, we propose a new set of acoustic features for automatic emotion recognition from audio. The features are based on the perceptual quality metrics that are given in perceptual evaluation of audio quality known as ITU BS.1387 recommendation. Starting from the outer and middle ear models of the auditory system, we base our features on the masked perceptual loudness which defines re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007